Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Adv Sci (Weinh) ; 11(4): e2302325, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38059818

RESUMO

Omega-6 fatty acids are the primary polyunsaturated fatty acids in most Western diets, while their role in diabetes remains controversial. Exposure of omega-6 fatty acids to an oxidative environment results in the generation of a highly reactive carbonyl species known as trans, trans-2,4-decadienal (tt-DDE). The timely and efficient detoxification of this metabolite, which has actions comparable to other reactive carbonyl species, such as 4-hydroxynonenal, acrolein, acetaldehyde, and methylglyoxal, is essential for disease prevention. However, the detoxification mechanism for tt-DDE remains elusive. In this study, the enzyme Aldh9a1b is identified as having a key role in the detoxification of tt-DDE. Loss of Aldh9a1b increased tt-DDE levels and resulted in an abnormal retinal vasculature and glucose intolerance in aldh9a1b-/- zebrafish. Transcriptomic and metabolomic analyses revealed that tt-DDE and aldh9a1b deficiency in larval and adult zebrafish induced insulin resistance and impaired glucose homeostasis. Moreover, alterations in hyaloid vasculature is induced by aldh9a1b knockout or by tt-DDE treatment can be rescued by the insulin receptor sensitizers metformin and rosiglitazone. Collectively, these results demonstrated that tt-DDE is the substrate of Aldh9a1b which causes microvascular damage and impaired glucose metabolism through insulin resistance.


Assuntos
Aldeídos , Resistência à Insulina , Insulina , Animais , Peixe-Zebra , Gluconeogênese , Ácidos Graxos Ômega-6
2.
Lancet Diabetes Endocrinol ; 11(11): 798-810, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37769677

RESUMO

BACKGROUND: Remission of type 2 diabetes can occur as a result of weight loss and is characterised by liver fat and pancreas fat reduction and recovered insulin secretion. In this analysis, we aimed to investigate the mechanisms of weight loss- induced remission in people with prediabetes. METHODS: In this prespecified post-hoc analysis, weight loss-induced resolution of prediabetes in the randomised, controlled, multicentre Prediabetes Lifestyle Intervention Study (PLIS) was assessed, and the results were validated against participants from the Diabetes Prevention Program (DPP) study. For PLIS, between March 1, 2012, and Aug 31, 2016, participants were recruited from eight clinical study centres (including seven university hospitals) in Germany and randomly assigned to receive either a control intervention, a standard lifestyle intervention (ie, DPP-based intervention), or an intensified lifestyle intervention for 12 months. For DPP, participants were recruited from 23 clinical study centres in the USA between July 31, 1996, and May 18, 1999, and randomly assigned to receive either a standard lifestyle intervention, metformin, or placebo. In both PLIS and DPP, only participants who were randomly assigned to receive lifestyle intervention or placebo and who lost at least 5% of their bodyweight were included in this analysis. Responders were defined as people who returned to normal fasting plasma glucose (FPG; <5·6 mmol/L), normal glucose tolerance (<7·8 mmol/L), and HbA1c less than 39 mmol/mol after 12 months of lifestyle intervention or placebo or control intervention. Non-responders were defined as people who had FPG, 2 h glucose, or HbA1c more than these thresholds. The main outcomes for this analysis were insulin sensitivity, insulin secretion, visceral adipose tissue (VAT), and intrahepatic lipid content (IHL) and were evaluated via linear mixed models. FINDINGS: Of 1160 participants recruited to PLIS, 298 (25·7%) had weight loss of 5% or more of their bodyweight at baseline. 128 (43%) of 298 participants were responders and 170 (57%) were non-responders. Responders were younger than non-responders (mean age 55·6 years [SD 9·9] vs 60·4 years [8·6]; p<0·0001). The DPP validation cohort included 683 participants who lost at least 5% of their bodyweight at baseline. Of these, 132 (19%) were responders and 551 (81%) were non-responders. In PLIS, BMI reduction was similar between responders and non-responders (responders mean at baseline 32·4 kg/m2 [SD 5·6] to mean at 12 months 29·0 kg/m2 [4·9] vs non-responders 32·1 kg/m2 [5·9] to 29·2 kg/m2 [5·4]; p=0·86). However, whole-body insulin sensitivity increased more in responders than in non-responders (mean at baseline 291 mL/[min × m2], SD 60 to mean at 12 months 378 mL/[min × m2], 56 vs 278 mL/[min × m2], 62, to 323 mL/[min × m2], 66; p<0·0001), whereas insulin secretion did not differ within groups over time or between groups (responders mean at baseline 175 pmol/mmol [SD 64] to mean at 12 months 163·7 pmol/mmol [60·6] vs non-responders 158·0 pmol/mmol [55·6] to 154·1 pmol/mmol [56·2]; p=0·46). IHL decreased in both groups, without a difference between groups (responders mean at baseline 10·1% [SD 8·7] to mean at 12 months 3·5% [3·9] vs non-responders 10·3% [8·1] to 4·2% [4·2]; p=0·34); however, VAT decreased more in responders than in non-responders (mean at baseline 6·2 L [SD 2·9] to mean at 12 months 4·1 L [2·3] vs 5·7 L [2·3] to 4·5 L [2·2]; p=0·0003). Responders had a 73% lower risk of developing type 2 diabetes than non-responders in the 2 years after the intervention ended. INTERPRETATION: By contrast to remission of type 2 diabetes, resolution of prediabetes was characterised by an improvement in insulin sensitivity and reduced VAT. Because return to normal glucose regulation (NGR) prevents development of type 2 diabetes, we propose the concept of remission of prediabetes in analogy to type 2 diabetes. We suggest that remission of prediabetes should be the primary therapeutic aim in individuals with prediabetes. FUNDING: German Federal Ministry for Education and Research via the German Center for Diabetes Research; the Ministry of Science, Research and the Arts Baden-Württemberg; the Helmholtz Association and Helmholtz Munich; the Cluster of Excellence Controlling Microbes to Fight Infections; and the German Research Foundation.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Estado Pré-Diabético , Humanos , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/prevenção & controle , Redução de Peso , Peso Corporal , Glucose , Estilo de Vida
3.
Redox Biol ; 59: 102576, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36535130

RESUMO

Glyoxalase 2 is the second enzyme of the glyoxalase system, catalyzing the detoxification of methylglyoxal to d-lactate via SD-Lactoylglutathione. Recent in vitro studies have suggested Glo2 as a regulator of glycolysis, but if Glo2 regulates glucose homeostasis and related organ specific functions in vivo has not yet been evaluated. Therefore, a CRISPR-Cas9 knockout of glo2 in zebrafish was created and analyzed. Consistent with its function in methylglyoxal detoxification, SD-Lactoylglutathione, but not methylglyoxal accumulated in glo2-/- larvae, without altering the glutathione metabolism or affecting longevity. Adult glo2-/- livers displayed a reduced hexose concentration and a reduced postprandial P70-S6 kinase activation, but upstream postprandial AKT phosphorylation remained unchanged. In contrast, glo2-/- skeletal muscle remained metabolically intact, possibly compensating for the dysfunctional liver through increased glucose uptake and glycolytic activity. glo2-/- zebrafish maintained euglycemia and showed no damage of the retinal vasculature, kidney, liver and skeletal muscle. In conclusion, the data identified Glo2 as a regulator of cellular energy metabolism in liver and skeletal muscle, but the redox state and reactive metabolite accumulation were not affected by the loss of Glo2.


Assuntos
Lactoilglutationa Liase , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Aldeído Pirúvico/metabolismo , Ácido Láctico , Glucose , Tioléster Hidrolases/metabolismo
4.
Redox Biol ; 50: 102249, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35114580

RESUMO

Reactive carbonyl species (RCS) are spontaneously formed in the metabolism and modify and impair the function of DNA, proteins and lipids leading to several organ complications. In zebrafish, knockout of the RCS detoxifying enzymes glyoxalase 1 (Glo 1), aldehyde dehydrogenase 3a1 (Aldh3a1) and aldo-ketoreductase 1a1a (Akr1a1a) showed a signature of elevated RCS which specifically regulated glucose metabolism, hyperglycemia and diabetic organ damage. aldh2.1 was compensatory upregulated in glo1-/- animals and therefore this study aimed to investigate the detoxification ability for RCS by Aldh2.1 in zebrafish independent of ethanol exposure. aldh2.1 knockout zebrafish were generated using CRISPR/Cas9 and subsequently analyzed on a histological, metabolomic and transcriptomic level. aldh2.1-/- zebrafish displayed increased endogenous acetaldehyde (AA) inducing an increased angiogenesis in retinal vasculature. Expression and pharmacological interventional studies identified an imbalance of c-Jun N-terminal kinase (JNK) and p38 MAPK induced by AA, which mediate an activation of angiogenesis. Moreover, increased AA in aldh2.1-/- zebrafish did not induce hyperglycemia, instead AA inhibited the expression of glucokinase (gck) and glucose-6-phosphatase (g6pc), which led to an impaired glucose metabolism. In conclusion, the data have identified AA as the preferred substrate for Aldh2.1's detoxification ability, which subsequently causes microvascular organ damage and impaired glucose metabolism.


Assuntos
Acetaldeído , Neovascularização Retiniana , Peixe-Zebra , Acetaldeído/metabolismo , Aldeído Desidrogenase/genética , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Glucose/metabolismo , Vasos Retinianos , Peixe-Zebra/metabolismo
5.
Radiology ; 302(1): 153-161, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34665029

RESUMO

Background Diffusion-weighted imaging (DWI) provides specific in vivo information about tissue microstructure, which is increasingly recognized for various applications outside the central nervous system. However, standard sequence parameters are commonly adopted from optimized central nervous system protocols, thus potentially neglecting differences in tissue-specific diffusional behavior. Purpose To characterize the optimal tissue-specific diffusion imaging weighting scheme over the b domain in peripheral nerves under physiologic and pathologic conditions. Materials and Methods In this prospective cross-sectional study, 3-T MR neurography of the sciatic nerve was performed in healthy volunteers (n = 16) and participants with type 2 diabetes (n = 12). For DWI, 16 b values in the range of 0-1500 sec/mm2 were acquired in axial and radial diffusion directions of the nerve. With a region of interest-based approach, diffusion-weighted signal behavior as a function of b was estimated using standard monoexponential, biexponential, and kurtosis fitting. Goodness of fit was assessed to determine the optimal b value for two-point DWI/diffusion tensor imaging (DTI). Results Non-Gaussian diffusional behavior was observed beyond b values of 600 sec/mm2 in the axial and 800 sec/mm2 in the radial diffusion direction in both participants with diabetes and healthy volunteers. Accordingly, the biexponential and kurtosis models achieved a better curve fit compared with the standard monoexponential model (Akaike information criterion >99.9% in all models), but the kurtosis model was preferred in the majority of cases. Significant differences between healthy volunteers and participants with diabetes were found in the kurtosis-derived parameters Dk and K. The results suggest an upper bound b value of approximately 700 sec/mm2 for optimal standard DWI/DTI in peripheral nerve applications. Conclusion In MR neurography, an ideal standard diffusion-weighted imaging/diffusion tensor imaging protocol with b = 700 sec/mm2 is suggested. This is substantially lower than in the central nervous system due to early-occurring non-Gaussian diffusion behavior and emphasizes the need for tissue-specific b value optimization. Including higher b values, kurtosis-derived parameters may represent promising novel imaging markers of peripheral nerve disease. ©RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Jang and Du in this issue.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Imagem de Difusão por Ressonância Magnética/métodos , Nervos Periféricos/diagnóstico por imagem , Nervos Periféricos/fisiopatologia , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes
6.
Mol Metab ; 55: 101406, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838714

RESUMO

OBJECTIVE: Methylglyoxal (MG) is a highly reactive α-oxoaldehyde that glycates proteins. MG has been linked to the development of diabetic complications: MG is the major precursor of advanced glycation end products (AGEs), a risk marker for diabetic complications in humans. Furthermore, flies and fish with elevated MG develop insulin resistance, obesity, and hyperglycemia. MG is detoxified in large part through the glyoxalase system, whose rate-limiting enzyme is glyoxalase I (Glo1). Hence, we aimed to study how Glo1 activity is regulated. METHODS: We studied the regulation and effect of post-translational modifications of Glo1 in tissue culture and in mouse models of diabetes. RESULTS: We show that Glo1 activity is promoted by phosphorylation on Tyrosine 136 via multiple kinases. We find that Glo1 Y136 phosphorylation responds in a bimodal fashion to glucose levels, increasing in cell culture from 0 mM to 5 mM (physiological) glucose, and then decreasing at higher glucose concentrations, both in cell culture and in mouse models of hyperglycemia. CONCLUSIONS: These data, together with published findings that elevated MG leads to hyperglycemia, suggest the existence of a deleterious positive feedback loop whereby hyperglycemia leads to reduced Glo1 activity, contributing to elevated MG levels, which in turn promote hyperglycemia. Hence, perturbations elevating either glucose or MG have the potential to start an auto-amplifying feedback loop contributing to diabetic complications.


Assuntos
Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Animais , Complicações do Diabetes , Diabetes Mellitus , Glucose , Produtos Finais de Glicação Avançada/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Hiperglicemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Fosforilação , Aldeído Pirúvico/metabolismo
7.
Diabetes ; 70(12): 2785-2795, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34531293

RESUMO

Lifestyle intervention (LI) can prevent type 2 diabetes, but response to LI varies depending on risk subphenotypes. We tested whether individuals with prediabetes with low risk (LR) benefit from conventional LI and individuals with high risk (HR) benefit from an intensification of LI in a multicenter randomized controlled intervention over 12 months with 2 years' follow-up. A total of 1,105 individuals with prediabetes based on American Diabetes Association glucose criteria were stratified into an HR or LR phenotype based on previously described thresholds of insulin secretion, insulin sensitivity, and liver fat content. LR individuals were randomly assigned to conventional LI according to the Diabetes Prevention Program (DPP) protocol or control (1:1) and HR individuals to conventional or intensified LI with doubling of required exercise (1:1). A total of 908 (82%) participants completed the study. In HR individuals, the difference between conventional and intensified LI in postchallenge glucose change was -0.29 mmol/L [95% CI -0.54; -0.04], P = 0.025. Liver fat (-1.34 percentage points [95% CI -2.17; -0.50], P = 0.002) and cardiovascular risk (-1.82 percentage points [95% CI -3.13; -0.50], P = 0.007) underwent larger reductions with intensified than with conventional LI. During a follow-up of 3 years, intensified compared with conventional LI had a higher probability of normalizing glucose tolerance (P = 0.008). In conclusion, it is possible in HR individuals with prediabetes to improve glycemic and cardiometabolic outcomes by intensification of LI. Individualized, risk phenotype-based LI may be beneficial for the prevention of diabetes.


Assuntos
Diabetes Mellitus Tipo 2/prevenção & controle , Estilo de Vida , Estado Pré-Diabético/terapia , Adolescente , Adulto , Idoso , Terapia Comportamental/métodos , Glicemia/metabolismo , Feminino , Alemanha , Teste de Tolerância a Glucose , Humanos , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Estado Pré-Diabético/sangue , Estado Pré-Diabético/patologia , Medição de Risco , Comportamento de Redução do Risco , Resultado do Tratamento , Adulto Jovem
8.
Adv Sci (Weinh) ; 8(18): e2101281, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34278746

RESUMO

Increased acrolein (ACR), a toxic metabolite derived from energy consumption, is associated with diabetes and its complications. However, the molecular mechanisms are mostly unknown, and a suitable animal model with internal increased ACR does not exist for in vivo studying so far. Several enzyme systems are responsible for acrolein detoxification, such as Aldehyde Dehydrogenase (ALDH), Aldo-Keto Reductase (AKR), and Glutathione S-Transferase (GST). To evaluate the function of ACR in glucose homeostasis and diabetes, akr1a1a-/- zebrafish mutants are generated using CRISPR/Cas9 technology. Accumulated endogenous acrolein is confirmed in akr1a1a-/- larvae and livers of adults. Moreover, a series of experiments are performed regarding organic alterations, the glucose homeostasis, transcriptome, and metabolomics in Tg(fli1:EGFP) zebrafish. Akr1a1a-/- larvae display impaired glucose homeostasis and angiogenic retina hyaloid vasculature, which are caused by reduced acrolein detoxification ability and increased internal ACR concentration. The effects of acrolein on hyaloid vasculature can be reversed by acrolein-scavenger l-carnosine treatment. In adult akr1a1a-/- mutants, impaired glucose tolerance accompanied by angiogenic retina vessels and glomerular basement membrane thickening, consistent with an early pathological appearance in diabetic retinopathy and nephropathy, are observed. Thus, the data strongly suggest impaired ACR detoxification and elevated ACR concentration as biomarkers and inducers for diabetes and diabetic complications.


Assuntos
Acroleína/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Receptor de Insulina/metabolismo , Animais , Modelos Animais de Doenças , Homeostase , Larva/metabolismo , Metabolômica/métodos , Transdução de Sinais , Transcriptoma , Peixe-Zebra/metabolismo
9.
iScience ; 23(12): 101763, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33251496

RESUMO

Regulation of glucose homeostasis is a fundamental process to maintain blood glucose at a physiological level, and its dysregulation is associated with the development of several metabolic diseases. Here, we report on a zebrafish mutant for Aldo-keto-reductase 1a1b (akr1a1b) as a regulator of gluconeogenesis. Adult akr1a1b -/- mutant zebrafish developed fasting hypoglycemia, which was caused by inhibiting phosphoenolpyruvate carboxykinase (PEPCK) expression as rate-limiting enzyme of gluconeogenesis. Subsequently, glucogenic amino acid glutamate as substrate for gluconeogenesis accumulated in the kidneys, but not in livers, and induced structural and functional pronephros alterations in 48-hpf akr1a1b -/- embryos. Akr1a1b -/- mutants displayed increased nitrosative stress as indicated by increased nitrotyrosine, and increased protein-S-nitrosylation. Inhibition of nitrosative stress using the NO synthase inhibitor L-NAME prevented kidney damage and normalized PEPCK expression in akr1a1b -/- mutants. Thus, the data have identified Akr1a1b as a regulator of gluconeogenesis in zebrafish and thereby controlling glucose homeostasis.

10.
Redox Biol ; 37: 101723, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32980661

RESUMO

Increased methylglyoxal (MG) formation is associated with diabetes and its complications. In zebrafish, knockout of the main MG detoxifying system Glyoxalase 1, led to limited MG elevation but significantly elevated aldehyde dehydrogenases (ALDH) activity and aldh3a1 expression, suggesting the compensatory role of Aldh3a1 in diabetes. To evaluate the function of Aldh3a1 in glucose homeostasis and diabetes, aldh3a1-/- zebrafish mutants were generated using CRISPR-Cas9. Vasculature and pancreas morphology were analysed by zebrafish transgenic reporter lines. Corresponding reactive carbonyl species (RCS), glucose, transcriptome and metabolomics screenings were performed and ALDH activity was measured for further verification. Aldh3a1-/- zebrafish larvae displayed retinal vasodilatory alterations, impaired glucose homeostasis, which can be aggravated via pdx1 silencing induced hyperglycaemia. Unexpectedly, MG was not altered, but 4-hydroxynonenal (4-HNE), another prominent lipid peroxidation RCS exhibited high affinity with Aldh3a1, was increased in aldh3a1 mutants. 4-HNE was responsible for the retinal phenotype via pancreas disruption induced hyperglycaemia and can be rescued via l-Carnosine treatment. Furthermore, in type 2 diabetic patients, serum 4-HNE was increased and correlated with disease progression. Thus, our data suggest impaired 4-HNE detoxification and elevated 4-HNE concentration as biomarkers but also the possible inducers for diabetes, from genetic susceptibility to the pathological progression.


Assuntos
Aldeído Desidrogenase , Diabetes Mellitus , Hiperglicemia , Peixe-Zebra , Aldeído Desidrogenase/genética , Aldeídos , Animais , Técnicas de Inativação de Genes , Humanos , Hiperglicemia/genética , Peixe-Zebra/genética
11.
PLoS One ; 14(9): e0222771, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31536600

RESUMO

Asprosin is a counter-regulatory hormone to insulin which plays a role in fasting. It may therefore also play a role in hypoglycaemia unawareness, which has been subsequently examined in this pilot study. Intravenous glucose tolerance test was used to induce controlled hyperglycemia whereas a hyperinsulinemic clamp test was used to induce a controlled hypoglycaemia in 15 patients with diabetes type 1, with and without hypoglycaemia unawareness. Changes in asprosin plasma levels did not differ between patients with and without hypoglycaemia unawareness. However, nine patients with insulin resistance as well as higher liver stiffness values and low-density lipoprotein but lower high-density lipoprotein levels did not show the expected increase in asprosin plasma levels during hypoglycemia. Therefore, insulin resistance and alterations in liver structure, most likely early stages of non-alcoholic fatty liver disease, seem to be relevant in type 1 diabetes and do not only lead to elevated plasma levels of asprosin, but also to a blunted asprosin response in hypoglycemia.


Assuntos
Diabetes Mellitus Tipo 1/sangue , Hipoglicemia/sangue , Resistência à Insulina , Proteínas dos Microfilamentos/sangue , Fragmentos de Peptídeos/sangue , Hormônios Peptídicos/sangue , Adulto , Idoso , Glicemia/metabolismo , Estudos de Coortes , Estudos Transversais , Feminino , Fibrilina-1 , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/patologia , Projetos Piloto
12.
Horm Metab Res ; 51(1): 69-75, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30396219

RESUMO

Radioiodine refractoriness in differentiated thyroid cancer remains an unsolved therapeutic problem. Response to retinoids might depend on specific genetic markers. In this retrospective analysis, associations between BRAF V600E and clinical outcomes after redifferentiation with retinoic acid (RA) and radioiodine therapy (RIT) were investigated. Thirteen patients with radioiodine-refractory (RAI-R) papillary thyroid cancer (PTC) were treated with 13-cis-RA followed by iodine-131 treatment at the Department of Endocrinology, Heidelberg University Hospital, Heidelberg, Germany. DNA sequencing was performed in formalin-fixed paraffin-embedded tissue. Clinical outcome parameters were tumor size, thyroglobulin, and radioiodine uptake in correlation to mutational status. Differences of each parameter were compared before and after RA/RIT. Initial response showed no difference in patients with BRAF V600E compared to patients with wild type. However, after a median follow-up of 2 and a half years, 2 out of 3 patients with BRAF V600E showed response compared to 5 out of 9 with wild type under consideration of all 3 parameters. In this small cohort, more RAI-R PTC patients with BRAF V600E receiving redifferentiation therapy showed response. Verification in a larger study population analyzing mutational status in patients with RAI-R PTC might be helpful to identify patients where redifferentiation therapy might lead to an improved outcome.


Assuntos
Radioisótopos do Iodo/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Câncer Papilífero da Tireoide/tratamento farmacológico , Câncer Papilífero da Tireoide/genética , Tretinoína/uso terapêutico , Adulto , Idoso , Estudos de Coortes , Feminino , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas B-raf/metabolismo , Estudos Retrospectivos , Câncer Papilífero da Tireoide/metabolismo
13.
Mol Metab ; 18: 143-152, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30287091

RESUMO

OBJECTIVES: The deficit of Glyoxalase I (Glo1) and the subsequent increase in methylglyoxal (MG) has been reported to be one the five mechanisms by which hyperglycemia causes diabetic late complications. Aldo-keto reductases (AKR) have been shown to metabolize MG; however, the relative contribution of this superfamily to the detoxification of MG in vivo, particularly within the diabetic state, remains unknown. METHODS: CRISPR/Cas9-mediated genome editing was used to generate a Glo1 knock-out (Glo1-/-) mouse line. Streptozotocin was then applied to investigate metabolic changes under hyperglycemic conditions. RESULTS: Glo1-/- mice were viable and showed no elevated MG or MG-H1 levels under hyperglycemic conditions. It was subsequently found that the enzymatic efficiency of various oxidoreductases in the liver and kidney towards MG were increased in the Glo1-/- mice. The functional relevance of this was supported by the altered distribution of alternative detoxification products. Furthermore, it was shown that MG-dependent AKR activity is a potentially clinical relevant pathway in human patients suffering from diabetes. CONCLUSIONS: These data suggest that in the absence of GLO1, AKR can effectively compensate to prevent the accumulation of MG. The combination of metabolic, enzymatic, and genetic factors, therefore, may provide a better means of identifying patients who are at risk for the development of late complications caused by elevated levels of MG.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Aldeído Pirúvico/metabolismo , Idoso , Aldo-Ceto Redutases/metabolismo , Animais , Feminino , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Rim/metabolismo , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
14.
Redox Biol ; 13: 674-686, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28826004

RESUMO

Energy production is inevitably linked to the generation of toxic metabolites, such as reactive oxygen and carbonyl species, known as major contributors to ageing and degenerative diseases. It remains unclear how cells can adapt to elevated energy flux accompanied by accumulating harmful by-products without taking any damage. Therefore, effects of a sudden rise in glucose concentrations were studied in yeast cells. This revealed a feedback mechanism initiated by the reactive dicarbonyl methylglyoxal, which is formed non-enzymatically during glycolysis. Low levels of methylglyoxal activate a multi-layered defence response against toxic metabolites composed of prevention, detoxification and damage remission. The latter is mediated by the protein quality control system and requires inducible Hsp70 and Btn2, the aggregase that sequesters misfolded proteins. This glycohormetic mechanism enables cells to pre-adapt to rising energy flux and directly links metabolic to proteotoxic stress. Further data suggest the existence of a similar response in endothelial cells.


Assuntos
Metabolismo Energético , Hormese , Aldeído Pirúvico/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Glucose/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
J Am Soc Nephrol ; 28(11): 3182-3189, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28696246

RESUMO

Established therapies for diabetic nephropathy (dNP) delay but do not prevent its progression. The shortage of established therapies may reflect the inability to target the tubular compartment. The chemical chaperone tauroursodeoxycholic acid (TUDCA) ameliorates maladaptive endoplasmic reticulum (ER) stress signaling and experimental dNP. Additionally, TUDCA activates the farnesoid X receptor (FXR), which is highly expressed in tubular cells. We hypothesized that TUDCA ameliorates maladaptive ER signaling via FXR agonism specifically in tubular cells. Indeed, TUDCA induced expression of FXR-dependent genes (SOCS3 and DDAH1) in tubular cells but not in other renal cells. In vivo, TUDCA reduced glomerular and tubular injury in db/db and diabetic endothelial nitric oxide synthase-deficient mice. FXR inhibition with Z-guggulsterone or vivo-morpholino targeting of FXR diminished the ER-stabilizing and renoprotective effects of TUDCA. Notably, these in vivo approaches abolished tubular but not glomerular protection by TUDCA. Combined intervention with TUDCA and the angiotensin-converting enzyme inhibitor enalapril in 16-week-old db/db mice reduced albuminuria more efficiently than did either treatment alone. Although both therapies reduced glomerular damage, only TUDCA ameliorated tubular damage. Thus, interventions that specifically protect the tubular compartment in dNP, such as FXR agonism, may provide renoprotective effects on top of those achieved by inhibiting angiotensin-converting enzyme.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Túbulos Renais , Receptores Citoplasmáticos e Nucleares/agonistas , Ácido Tauroquenodesoxicólico/uso terapêutico , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
PLoS One ; 11(1): e0145513, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26760974

RESUMO

The water channel aquaporin-1 (AQP1) mediates about 50% ultrafiltration during a 2-hour hypertonic dwell in global AQP1 knockout (AQP1-/-) mice. Although AQP1 is widely expressed in various cell types including mesothelial cells, the ultrafiltration has been assumed to be mediated via endothelial AQP1 of the peritoneum. The partial embryonic lethality and reduced body weight in AQP1-/- mice may reflect potential confounding phenotypic effects evoked by ubiquitous AQP1 deletion, which may interfere with functional analysis of endothelial AQP1. Using a Cre/loxP approach, we generated and characterised endothelial cell- and time-specific AQP1 knockout (AQP1fl/fl; Cdh5-Cre+) mice. Compared to controls, AQP1fl/fl; Cdh5-Cre+ mice showed no difference in an initial clinical and biological analysis at baseline, including body weight and survival. During a 1-hour 3.86% mini-peritoneal equilibration test (mini-PET), AQP1fl/fl; Cdh5-Cre+ mice exhibited strongly decreased indices for AQP1-related transcellular water transport (43.0% in net ultrafiltration, 93.0% in sodium sieving and 57.9% in free water transport) compared to controls. The transport rates for small solutes of urea and glucose were not significantly altered. Our data provide the first direct experimental evidence for the functional relevance of endothelial AQP1 to the fluid transport in peritoneal dialysis and thereby further validate essential predictions of the three-pore model of peritoneal transport.


Assuntos
Aquaporina 1/metabolismo , Células Endoteliais/metabolismo , Diálise Peritoneal , Ultrafiltração , Alelos , Animais , Transporte Biológico , Separação Celular , Feminino , Imunofluorescência , Marcação de Genes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reprodutibilidade dos Testes , Água/metabolismo
17.
Front Med (Lausanne) ; 2: 10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25806370

RESUMO

BACKGROUND: In peritoneal dialysis (PD), residual renal function (RRF) fundamentally contributes to improved quality of life and patient survival. High glucose and advanced glycation end-products (AGE) contribute locally to peritoneal and systemically to renal damage. Integrity of podocyte structure and function is of special importance to preserve RRF. Benfotiamine could counteract the glucose and AGE-mediated toxicity by blocking hyperglycemia-associated podocyte damage via the pentose-phosphate pathway. METHODS: A human differentiated podocyte cell line was incubated with control solution (control), 2.5% glucose solution (glucose), and 2.5% peritoneal dialysis fluid (PDF) for 48 h either ±50 µM benfotiamine. Podocyte damage and potential benefit of benfotiamine were analyzed using immunofluorescence, western blot analysis, and a functional migration assay. For quantitation, a semiquantitative score was used. RESULTS: When incubating podocytes with benfotiamine, glucose, and PDF-mediated damage was reduced, resulting in lower expression of AGE and intact podocin and ZO-1 localization. The reorganization of the actin cytoskeleton was restored in the presence of benfotiamine as functional podocyte motility reached control level. Decreased level of inflammation could be shown as well as reduced podocyte apoptosis. CONCLUSION: These data suggest that benfotiamine protects podocytes from glucose and PDF-mediated dysfunction and damage, in particular, with regard to cytoskeletal reorganization, motility, inflammation, and podocyte survival.

18.
Mediators Inflamm ; 2015: 691491, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26880860

RESUMO

BACKGROUND: Severe traumatization induces a complex pathophysiology, driven by the patient's own immune system. The initial activation is a result of damage-associated molecular patterns, which are released from disrupted and dying cells and recognized by immune receptors, for example, RAGE. In this study we aimed to evaluate the contribution of the RAGE axis to early and late immune responses. METHODS: We enrolled 16 patients with severe trauma together with 10 patients after major abdominal surgery and 10 healthy volunteers. Blood samples were taken on admission and every 48 h for a total of 8 days. Plasma concentrations of various RAGE ligands as well as RAGE isoforms and IL-6 were measured by ELISA. Monocyte surface expression of RAGE and HLA-DR was assessed by flow cytometry. RESULTS: High and transient levels of IL-6 and methylglyoxal characterize the early immune response after trauma, whereas samples from later time points provide evidence for a secondary release of RAGE ligands. CONCLUSION: Our results provide evidence for a persisting activation of the RAGE axis while classical mediators like IL-6 disappear early. Considering the immunocompromised phenotype of the monocytes, the RAGE ligands might be substantial contributors to the well-known secondary stage of impaired immune responsiveness in trauma patients.


Assuntos
Receptor para Produtos Finais de Glicação Avançada/imunologia , Ferimentos e Lesões/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Antígenos HLA-DR/sangue , Humanos , Tolerância Imunológica , Interleucina-6/sangue , Ligantes , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Projetos Piloto , Estudos Prospectivos , Aldeído Pirúvico/sangue , Receptor para Produtos Finais de Glicação Avançada/sangue , Estresse Fisiológico , Ferimentos e Lesões/sangue , Adulto Jovem
19.
Mol Metab ; 2(3): 314-23, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24049743

RESUMO

Altered adipose tissue formation is a well-known effectors of obesity and T2D. Here, we describe the role of Lrh1 and its co-repressor Shp in the control of adipocyte formation. Expression of Lrh1 in the pre-adipocyte containing SVF is induced in obese mice models and humans while Shp expression is reduced. We demonstrate, that Lrh1 is an inhibitor of adipogenesis while Shp acts functions as an activator through repression of Lrh1 activity. This regulation is at least in part modulated by estradiol conversion through the regulation of Cyp19a1 gene expression. In vivo, loss of Lrh1 leads to induced adipogenesis, while loss of Shp causes uncontrolled activation of Lrh1 and reduced adipogenesis. As Shp expression has been linked to the development of obesity and metabolic disorders, it is possible that alterations of the Shp/Lrh1 network lead to changes in adipocyte formation, which might contribute to the development of obesity associated T2D.

20.
Z Arztl Fortbild Qualitatssich ; 98 Suppl 5: 33-5, 2004 May.
Artigo em Alemão | MEDLINE | ID: mdl-15255311

RESUMO

Numerous clinical studies point towards connections between cardiovascular morbidity and mortality and disorders of the thyroid function. This does not only apply to clinically manifest functional disorders, but also to their subclinical stages. The present review discusses in detail some of the most important endothelial changes, open questions and future developments.


Assuntos
Arteriosclerose/fisiopatologia , Endotélio Vascular/fisiologia , Hormônios Tireóideos/fisiologia , Arteriosclerose/patologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Doença de Graves/patologia , Doença de Graves/fisiopatologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...